Class: RegressionMetrics

eclairjs/mllib/evaluation. RegressionMetrics

new RegressionMetrics(predictionAndObservations, predictionAndObservations)

Evaluator for regression.
Parameters:
Name Type Description
predictionAndObservations an RDD of (prediction, observation) pairs.
predictionAndObservations module:eclairjs.RDD
Source:

Methods

explainedVariance() → {number}

Returns the variance explained by regression. explainedVariance = \sum_i (\hat{y_i} - \bar{y})^2 / n
Source:
See:
  • [[https://en.wikipedia.org/wiki/Fraction_of_variance_unexplained]]
Returns:
Type
number

meanAbsoluteError() → {number}

Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.
Source:
Returns:
Type
number

meanSquaredError() → {number}

Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.
Source:
Returns:
Type
number

r2() → {number}

Returns R^2^, the unadjusted coefficient of determination.
Source:
See:
  • [[http://en.wikipedia.org/wiki/Coefficient_of_determination]]
Returns:
Type
number

rootMeanSquaredError() → {number}

Returns the root mean squared error, which is defined as the square root of the mean squared error.
Source:
Returns:
Type
number