new RelationalGroupedDataset()
Methods
agg()
Compute aggregates by specifying a series of aggregate columns. Note that this function by default retains the grouping columns in its output.
To not retain grouping columns, set spark.sql.retainGroupColumns to false.
The available aggregate methods are defined in functions.
Parameters:
Name | Type | Description |
---|---|---|
columnExpr,...columnExpr |
module:eclairjs/sql.Column | string | or columnName, ...columnName |
- Since:
- EclairJS 0.1 Spark 1.3.0
- Source:
Returns:
module:eclairjs/sql.Dataset}
Example
// Java:
df.groupBy("department").agg(max("age"), sum("expense"));
avg(cols)
Compute the avg value for each numeric columns for each group.
Parameters:
Name | Type | Description |
---|---|---|
cols |
Array.<string> |
Returns:
module:eclairjs/sql.Dataset}
count()
Count the number of rows for each group.
Returns:
module:eclairjs/sql.Dataset}
max(cols)
Compute the max value for each numeric columns for each group.
Parameters:
Name | Type | Description |
---|---|---|
cols |
Array.<string> |
Returns:
module:eclairjs/sql.Dataset}
mean(cols)
Compute the mean value for each numeric columns for each group.
Parameters:
Name | Type | Description |
---|---|---|
cols |
Array.<string> |
Returns:
module:eclairjs/sql.Dataset}
min(cols)
Compute the min value for each numeric columns for each group.
Parameters:
Name | Type | Description |
---|---|---|
cols |
Array.<string> |
Returns:
module:eclairjs/sql.Dataset}
pivot(pivotColumn, valuesopt) → {module:eclairjs/sql.RelationalGroupedDataset}
Pivots a column of the current DataFrame and perform the specified aggregation.
There are two versions of pivot function: one that requires the caller to specify the list
of distinct values to pivot on, and one that does not. The latter is more concise but less
efficient, because Spark needs to first compute the list of distinct values internally.
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
pivotColumn |
string | Name of the column to pivot. | |
values |
module:eclairjs.List |
<optional> |
List of values that will be translated to columns in the output DataFrame. |
- Since:
- EclairJS 0.1 Spark 1.6.0
- Source:
Returns:
Example
// Compute the sum of earnings for each year by course with each course as a separate column
df.groupBy("year").pivot("course", new List(["dotNET", "Java"])).sum("earnings")
// Or without specifying column values (less efficient)
df.groupBy("year").pivot("course").sum("earnings")
sum(cols)
Compute the sum value for each numeric columns for each group.
Parameters:
Name | Type | Description |
---|---|---|
cols |
Array.<string> |
Returns:
module:eclairjs/sql.Dataset}