new PairDStream(jDStream)
Parameters:
Name |
Type |
Description |
jDStream |
object
|
|
- Source:
Methods
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
combineByKey(createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombineopt) → {module:eclairjs/streaming/dstream.PairDStream}
Combine elements of each key in DStream's RDDs using custom function. This is similar to the
combineByKey for RDDs. Please refer to combineByKey in
org.apache.spark.rdd.PairRDDFunctions for more information.
Parameters:
Name |
Type |
Attributes |
Description |
createCombiner |
func
|
|
|
mergeValue |
func
|
|
|
mergeCombiners |
func
|
|
|
partitioner |
module:eclairjs.Partitioner
|
|
|
mapSideCombine |
boolean
|
<optional>
|
|
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Parameters:
- Source:
Returns:
-
Type
-
module:eclairjs.PairRDD
Parameters:
Name |
Type |
Description |
f |
func
|
|
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Return a new DStream by applying a flatmap function to the value of each key-value pairs in
'this' DStream without changing the key.
Parameters:
Name |
Type |
Description |
f |
func
|
|
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to
generate the RDDs with Spark's default number of partitions.
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Return a new DStream by applying a map function to the value of each key-value pairs in
'this' DStream without changing the key.
Parameters:
Name |
Type |
Description |
f |
func
|
|
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Parameters:
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are
merged using the associative reduce function. Hash partitioning is used to generate the RDDs
with Spark's default number of partitions.
Parameters:
Name |
Type |
Description |
func |
func
|
|
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Create a new DStream by applying `reduceByKey` over a sliding window on `this` DStream.
Similar to `DStream.reduceByKey()`, but applies it over a sliding window. The new DStream
generates RDDs with the same interval as this DStream. Hash partitioning is used to generate
the RDDs with Spark's default number of partitions.
Parameters:
Name |
Type |
Description |
reduceFunc |
func
|
associative reduce function |
windowDuration |
module:eclairjs/streaming.Duration
|
width of the window; must be a multiple of this DStream's
batching interval |
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Return a new DStream with an increased or decreased level of parallelism. Each RDD in the
returned DStream has exactly numPartitions partitions.
Parameters:
Name |
Type |
Description |
numPartitions |
number
|
|
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Return a new DStream by unifying data of another DStream with this DStream.
Parameters:
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream
Return a new DStream which is computed based on windowed batches of this DStream.
Parameters:
Name |
Type |
Attributes |
Description |
windowDuration |
module:eclairjs/streaming.Duration
|
|
duration (i.e., width) of the window;
must be a multiple of this DStream's interval |
slideDuration |
module:eclairjs/streaming.Duration
|
<optional>
|
sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's interval |
- Source:
Returns:
-
Type
-
module:eclairjs/streaming/dstream.PairDStream