Class: SquaredL2Updater

eclairjs/mllib/optimization. SquaredL2Updater

new SquaredL2Updater()

Class used to perform steps (weight update) using Gradient Descent methods. For general minimization problems, or for regularized problems of the form min L(w) + regParam * R(w), the compute function performs the actual update step, when given some (e.g. stochastic) gradient direction for the loss L(w), and a desired step-size (learning rate).The updater is responsible to also perform the update coming from the regularization term R(w) (if any regularization is used).
Source:

Extends

Methods

compute(weightsOld, gradient, stepSize, iter, regParam) → {module:eclairjs.Tuple2}

Compute an updated value for weights given the gradient, stepSize, iteration number and regularization parameter. Also returns the regularization value regParam * R(w) computed using the *updated* weights.
Parameters:
Name Type Description
weightsOld module:eclairjs/mllib/linalg.Vector - Column matrix of size dx1 where d is the number of features.
gradient module:eclairjs/mllib/linalg.Vector - Column matrix of size dx1 where d is the number of features.
stepSize float - step size across iterations
iter integer - Iteration number
regParam float - Regularization parameter
Overrides:
Source:
Returns:
A tuple of 2 elements. The first element is a column matrix containing updated weights, and the second element is the regularization value computed using updated weights.
Type
module:eclairjs.Tuple2