new RandomRDDs()
Methods
(static) exponentialJavaRDD0(jsc, mean, size, numPartitions, seed) → {module:eclairjs.FloatRDD}
Java-friendly version of [[RandomRDDs#exponentialRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
size |
number | |
numPartitions |
number | |
seed |
number |
Returns:
(static) exponentialJavaRDD1(jsc, mean, size, numPartitions) → {module:eclairjs.FloatRDD}
[[RandomRDDs#exponentialJavaRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
size |
number | |
numPartitions |
number |
Returns:
(static) exponentialJavaRDD2(jsc, mean, size) → {module:eclairjs.FloatRDD}
[[RandomRDDs#exponentialJavaRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
size |
number |
Returns:
(static) exponentialJavaVectorRDD0(jsc, mean, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Java-friendly version of [[RandomRDDs#exponentialVectorRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number | |
seed |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) exponentialJavaVectorRDD1(jsc, mean, numRows, numCols, numPartitions) → {module:eclairjs.RDD}
[[RandomRDDs#exponentialJavaVectorRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) exponentialJavaVectorRDD2(jsc, mean, numRows, numCols) → {module:eclairjs.RDD}
[[RandomRDDs#exponentialJavaVectorRDD]] with the default number of partitions
and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
numRows |
number | |
numCols |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) exponentialRDD(sc, mean, size, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD comprised of `i.i.d.` samples from the exponential distribution with
the input mean.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
mean |
number | Mean, or 1 / lambda, for the exponential distribution. |
size |
number | Size of the RDD. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Double] comprised of `i.i.d.` samples ~ Pois(mean).
- Type
- module:eclairjs.RDD
(static) exponentialVectorRDD(sc, mean, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD[Vector] with vectors containing `i.i.d.` samples drawn from the
exponential distribution with the input mean.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
mean |
number | Mean, or 1 / lambda, for the Exponential distribution. |
numRows |
number | Number of Vectors in the RDD. |
numCols |
number | Number of elements in each Vector. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`) |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Vector] with vectors containing `i.i.d.` samples ~ Exp(mean).
- Type
- module:eclairjs.RDD
(static) gammaJavaRDD0(jsc, shape, scale, size, numPartitions, seed) → {module:eclairjs.FloatRDD}
Java-friendly version of [[RandomRDDs#gammaRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
shape |
number | |
scale |
number | |
size |
number | |
numPartitions |
number | |
seed |
number |
Returns:
(static) gammaJavaRDD1(jsc, shape, scale, size, numPartitions) → {module:eclairjs.FloatRDD}
[[RandomRDDs#gammaJavaRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
shape |
number | |
scale |
number | |
size |
number | |
numPartitions |
number |
Returns:
(static) gammaJavaRDD2(jsc, shape, scale, size) → {module:eclairjs.FloatRDD}
[[RandomRDDs#gammaJavaRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
shape |
number | |
scale |
number | |
size |
number |
Returns:
(static) gammaJavaVectorRDD0(jsc, shape, scale, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Java-friendly version of [[RandomRDDs#gammaVectorRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
shape |
number | |
scale |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number | |
seed |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) gammaJavaVectorRDD1(jsc, shape, scale, numRows, numCols, numPartitions) → {module:eclairjs.RDD}
[[RandomRDDs#gammaJavaVectorRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
shape |
number | |
scale |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) gammaJavaVectorRDD2(jsc, shape, scale, numRows, numCols) → {module:eclairjs.RDD}
[[RandomRDDs#gammaJavaVectorRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
shape |
number | |
scale |
number | |
numRows |
number | |
numCols |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) gammaRDD(sc, shape, scale, size, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD comprised of `i.i.d.` samples from the gamma distribution with the input
shape and scale.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
shape |
number | shape parameter (> 0) for the gamma distribution |
scale |
number | scale parameter (> 0) for the gamma distribution |
size |
number | Size of the RDD. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Double] comprised of `i.i.d.` samples ~ Pois(mean).
- Type
- module:eclairjs.RDD
(static) gammaVectorRDD(sc, shape, scale, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD[Vector] with vectors containing `i.i.d.` samples drawn from the
gamma distribution with the input shape and scale.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
shape |
number | shape parameter (> 0) for the gamma distribution. |
scale |
number | scale parameter (> 0) for the gamma distribution. |
numRows |
number | Number of Vectors in the RDD. |
numCols |
number | Number of elements in each Vector. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`) |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Vector] with vectors containing `i.i.d.` samples ~ Exp(mean).
- Type
- module:eclairjs.RDD
(static) logNormalJavaRDD0(jsc, mean, std, size, numPartitions, seed) → {module:eclairjs.FloatRDD}
Java-friendly version of [[RandomRDDs#logNormalRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
std |
number | |
size |
number | |
numPartitions |
number | |
seed |
number |
Returns:
(static) logNormalJavaRDD1(jsc, mean, std, size, numPartitions) → {module:eclairjs.FloatRDD}
[[RandomRDDs#logNormalJavaRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
std |
number | |
size |
number | |
numPartitions |
number |
Returns:
(static) logNormalJavaRDD2(jsc, mean, std, size) → {module:eclairjs.FloatRDD}
[[RandomRDDs#logNormalJavaRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
std |
number | |
size |
number |
Returns:
(static) logNormalJavaVectorRDD0(jsc, mean, std, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Java-friendly version of [[RandomRDDs#logNormalVectorRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
std |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number | |
seed |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) logNormalJavaVectorRDD1(jsc, mean, std, numRows, numCols, numPartitions) → {module:eclairjs.RDD}
[[RandomRDDs#logNormalJavaVectorRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
std |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) logNormalJavaVectorRDD2(jsc, mean, std, numRows, numCols) → {module:eclairjs.RDD}
[[RandomRDDs#logNormalJavaVectorRDD]] with the default number of partitions and
the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
std |
number | |
numRows |
number | |
numCols |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) logNormalRDD(sc, mean, std, size, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD comprised of `i.i.d.` samples from the log normal distribution with the input
mean and standard deviation
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
mean |
number | mean for the log normal distribution |
std |
number | standard deviation for the log normal distribution |
size |
number | Size of the RDD. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Double] comprised of `i.i.d.` samples ~ Pois(mean).
- Type
- module:eclairjs.RDD
(static) logNormalVectorRDD(sc, mean, std, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD[Vector] with vectors containing `i.i.d.` samples drawn from a
log normal distribution.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
mean |
number | Mean of the log normal distribution. |
std |
number | Standard deviation of the log normal distribution. |
numRows |
number | Number of Vectors in the RDD. |
numCols |
number | Number of elements in each Vector. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Vector] with vectors containing `i.i.d.` samples.
- Type
- module:eclairjs.RDD
(static) normalRDD(sc, size, numPartitionsopt, seedopt) → {module:eclairjs.RDD}
Generates an RDD comprised of `i.i.d.` samples from the standard normal distribution.
To transform the distribution in the generated RDD from standard normal to some other normal
`N(mean, sigma^2^)`, use `RandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v)`.
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. | |
size |
number | Size of the RDD. | |
numPartitions |
number |
<optional> |
Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number |
<optional> |
Random seed (default: a random long integer). |
Returns:
RDD[Double] Optional comprised of `i.i.d.` samples ~ N(0.0, 1.0).
- Type
- module:eclairjs.RDD
(static) normalVectorRDD(sc, numRows, numCols, numPartitionsopt, seedopt) → {module:eclairjs.RDD}
Generates an RDD[Vector] with vectors containing `i.i.d.` samples drawn from the
standard normal distribution.
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. | |
numRows |
number | Number of Vectors in the RDD. | |
numCols |
number | Number of elements in each Vector. | |
numPartitions |
number |
<optional> |
Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number |
<optional> |
Random seed (default: a random long integer). |
Returns:
RDD[Vector] with vectors containing `i.i.d.` samples ~ `N(0.0, 1.0)`.
- Type
- module:eclairjs.RDD
(static) poissonJavaRDD0(jsc, mean, size, numPartitions, seed) → {module:eclairjs.FloatRDD}
Java-friendly version of [[RandomRDDs#poissonRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
size |
number | |
numPartitions |
number | |
seed |
number |
Returns:
(static) poissonJavaRDD1(jsc, mean, size, numPartitions) → {module:eclairjs.FloatRDD}
[[RandomRDDs#poissonJavaRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
size |
number | |
numPartitions |
number |
Returns:
(static) poissonJavaRDD2(jsc, mean, size) → {module:eclairjs.FloatRDD}
[[RandomRDDs#poissonJavaRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
size |
number |
Returns:
(static) poissonJavaVectorRDD0(jsc, mean, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Java-friendly version of [[RandomRDDs#poissonVectorRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number | |
seed |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) poissonJavaVectorRDD1(jsc, mean, numRows, numCols, numPartitions) → {module:eclairjs.RDD}
[[RandomRDDs#poissonJavaVectorRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
numRows |
number | |
numCols |
number | |
numPartitions |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) poissonJavaVectorRDD2(jsc, mean, numRows, numCols) → {module:eclairjs.RDD}
[[RandomRDDs#poissonJavaVectorRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
mean |
number | |
numRows |
number | |
numCols |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) poissonRDD(sc, mean, size, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD comprised of `i.i.d.` samples from the Poisson distribution with the input
mean.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
mean |
number | Mean, or lambda, for the Poisson distribution. |
size |
number | Size of the RDD. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Double] comprised of `i.i.d.` samples ~ Pois(mean).
- Type
- module:eclairjs.RDD
(static) poissonVectorRDD(sc, mean, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD[Vector] with vectors containing `i.i.d.` samples drawn from the
Poisson distribution with the input mean.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
mean |
number | Mean, or lambda, for the Poisson distribution. |
numRows |
number | Number of Vectors in the RDD. |
numCols |
number | Number of elements in each Vector. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`) |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Vector] with vectors containing `i.i.d.` samples ~ Pois(mean).
- Type
- module:eclairjs.RDD
(static) uniformJavaRDD0(jsc, size, numPartitions, seed) → {module:eclairjs.FloatRDD}
Java-friendly version of [[RandomRDDs#uniformRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
size |
number | |
numPartitions |
number | |
seed |
number |
Returns:
(static) uniformJavaRDD1(jsc, size, numPartitions) → {module:eclairjs.FloatRDD}
[[RandomRDDs#uniformJavaRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
size |
number | |
numPartitions |
number |
Returns:
(static) uniformJavaRDD2(jsc, size) → {module:eclairjs.FloatRDD}
[[RandomRDDs#uniformJavaRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
size |
number |
Returns:
(static) uniformJavaVectorRDD0(jsc, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Java-friendly version of [[RandomRDDs#uniformVectorRDD]].
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
numRows |
number | |
numCols |
number | |
numPartitions |
number | |
seed |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) uniformJavaVectorRDD1(jsc, numRows, numCols, numPartitions) → {module:eclairjs.RDD}
[[RandomRDDs#uniformJavaVectorRDD]] with the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
numRows |
number | |
numCols |
number | |
numPartitions |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) uniformJavaVectorRDD2(jsc, numRows, numCols) → {module:eclairjs.RDD}
[[RandomRDDs#uniformJavaVectorRDD]] with the default number of partitions and the default seed.
Parameters:
Name | Type | Description |
---|---|---|
jsc |
JavaSparkContext | |
numRows |
number | |
numCols |
number |
Returns:
- Type
- module:eclairjs.RDD
(static) uniformRDD(sc, size, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD comprised of `i.i.d.` samples from the uniform distribution `U(0.0, 1.0)`.
To transform the distribution in the generated RDD from `U(0.0, 1.0)` to `U(a, b)`, use
`RandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v)`.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
size |
number | Size of the RDD. |
numPartitions |
number | Number of partitions in the RDD (default: `sc.defaultParallelism`). |
seed |
number | Random seed (default: a random long integer). |
Returns:
RDD[Double] comprised of `i.i.d.` samples ~ `U(0.0, 1.0)`.
- Type
- module:eclairjs.RDD
(static) uniformVectorRDD(sc, numRows, numCols, numPartitions, seed) → {module:eclairjs.RDD}
Generates an RDD[Vector] with vectors containing `i.i.d.` samples drawn from the
uniform distribution on `U(0.0, 1.0)`.
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | SparkContext used to create the RDD. |
numRows |
number | Number of Vectors in the RDD. |
numCols |
number | Number of elements in each Vector. |
numPartitions |
number | Number of partitions in the RDD. |
seed |
number | Seed for the RNG that generates the seed for the generator in each partition. |
Returns:
RDD[Vector] with vectors containing i.i.d samples ~ `U(0.0, 1.0)`.
- Type
- module:eclairjs.RDD