Class: LinearRegressionSummary

eclairjs/ml/regression. LinearRegressionSummary

Linear regression results evaluated on a dataset.

Constructor

new LinearRegressionSummary()

Source:

Methods

coefficientStandardErrors() → {Array.<float>}

Standard error of estimated coefficients and intercept.
Source:
Returns:
Type
Array.<float>

devianceResiduals() → {Array.<float>}

The weighted residuals, the usual residuals rescaled by the square root of the instance weights.
Source:
Returns:
Type
Array.<float>

explainedVariance() → {float}

Source:
Returns:
Type
float

labelCol() → {string}

Source:
Returns:
Type
string

meanAbsoluteError() → {float}

Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
Source:
Returns:
Type
float

meanSquaredError() → {float}

Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
Source:
Returns:
Type
float

model() → {module:eclairjs/ml/regression.LinearRegressionModel}

Source:
Returns:
Type
module:eclairjs/ml/regression.LinearRegressionModel

numInstances() → {integer}

Number of instances in DataFrame predictions
Source:
Returns:
Type
integer

predictionCol() → {string}

Source:
Returns:
Type
string

predictions() → {module:eclairjs/sql.DataFrame}

Source:
Returns:
Type
module:eclairjs/sql.DataFrame

pValues() → {Array.<float>}

Two-sided p-value of estimated coefficients and intercept.
Source:
Returns:
Type
Array.<float>

r2() → {float}

Returns R^2^, the coefficient of determination. Reference: http://en.wikipedia.org/wiki/Coefficient_of_determination Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
Source:
Returns:
Type
float

residuals() → {module:eclairjs/sql.DataFrame}

Residuals (label - predicted value)
Source:
Returns:
Type
module:eclairjs/sql.DataFrame

rootMeanSquaredError() → {float}

Returns the root mean squared error, which is defined as the square root of the mean squared error. Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
Source:
Returns:
Type
float

tValues() → {Array.<float>}

T-statistic of estimated coefficients and intercept.
Source:
Returns:
Type
Array.<float>