Class: TrainValidationSplitModel

eclairjs/ml/tuning. TrainValidationSplitModel

Model from train validation split.

Constructor

new TrainValidationSplitModel()

Source:

Extends

Methods

(static) load(path) → {module:eclairjs/ml/tuning.TrainValidationSplitModel}

Parameters:
Name Type Description
path string
Source:
Returns:
Type
module:eclairjs/ml/tuning.TrainValidationSplitModel

(static) read() → {module:eclairjs/ml/util.MLReader}

Source:
Returns:
Type
module:eclairjs/ml/util.MLReader

bestModel() → {Object}

Source:
Returns:
Type
Object

copy(extra) → {module:eclairjs/ml/tuning.TrainValidationSplitModel}

Parameters:
Name Type Description
extra module:eclairjs/ml/param.ParamMap
Overrides:
Source:
Returns:
Type
module:eclairjs/ml/tuning.TrainValidationSplitModel

estimator() → {module:eclairjs/ml/param.Param}

Param for ratio between train and validation data. Must be between 0 and 1. Default: 0.75
Source:
Returns:
Type
module:eclairjs/ml/param.Param

estimatorParamMaps() → {module:eclairjs/ml/param.Param}

Param for ratio between train and validation data. Must be between 0 and 1. Default: 0.75
Source:
Returns:
Type
module:eclairjs/ml/param.Param

evaluator() → {module:eclairjs/ml/param.Param}

param for the evaluator used to select hyper-parameters that maximize the validated metric
Source:
Returns:
Type
module:eclairjs/ml/param.Param

getEstimator() → {module:eclairjs/ml.Estimator}

Source:
Returns:
Type
module:eclairjs/ml.Estimator

getEstimatorParamMaps() → {module:eclairjs/ml/param.ParamMap}

Source:
Returns:
Type
module:eclairjs/ml/param.ParamMap

getEvaluator() → {module:eclairjs/ml/evaluation/Evaluator}

Source:
Returns:
Type
module:eclairjs/ml/evaluation/Evaluator

getTrainRatio() → {float}

Source:
Returns:
Type
float

hasParent() → {boolean}

Inherited From:
Source:
Returns:
Type
boolean

parent() → {module:eclairjs/ml.Estimator}

Inherited From:
Source:
Returns:
Type
module:eclairjs/ml.Estimator

setParent(parent) → {object}

Sets the parent of this model.
Parameters:
Name Type Description
parent module:eclairjs/ml.Estimator
Inherited From:
Source:
Returns:
Type
object

trainRatio() → {module:eclairjs/ml/param.DoubleParam}

Param for ratio between train and validation data. Must be between 0 and 1. Default: 0.75
Source:
Returns:
Type
module:eclairjs/ml/param.DoubleParam

transform(dataset, paramsopt, …otherParamPairsopt) → {module:eclairjs/sql.Dataset}

Transforms the dataset with optional parameters
Parameters:
Name Type Attributes Description
dataset module:eclairjs/sql.Dataset input dataset
params module:eclairjs/ml/param.ParamMap | module:eclairjs/ml/param.ParamPair <optional>
additional parameters, overwrite embedded params, overwrite embedded params
otherParamPairs module:eclairjs/ml/param.ParamPair <optional>
<repeatable>
other param pairs, Only used if argument two is module:eclairjs/ml/param.ParamPair. Overwrite embedded params
Inherited From:
Source:
Returns:
transformed dataset
Type
module:eclairjs/sql.Dataset

transformSchema() → {module:eclairjs/sql/types.StructType}

Check transform validity and derive the output schema from the input schema. Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. * @param {module:eclairjs/sql/types.StructType} schema
Inherited From:
Source:
Returns:
Type
module:eclairjs/sql/types.StructType

uid() → {string}

An immutable unique ID for the object and its derivatives.
Source:
Returns:
Type
string

validationMetrics() → {Array.<float>}

Source:
Returns:
Type
Array.<float>

write() → {module:eclairjs/ml/util.MLWriter}

Source:
Returns:
Type
module:eclairjs/ml/util.MLWriter