Class: GeneralizedLinearRegressionSummary

eclairjs/ml/regression. GeneralizedLinearRegressionSummary

:: Experimental :: Summary of GeneralizedLinearRegression model and predictions.

Constructor

new GeneralizedLinearRegressionSummary(dataset, origModel)

Parameters:
Name Type Description
dataset Dataset to be summarized.
origModel Model to be summarized. This is copied to create an internal model which cannot be modified from outside.
Source:

Methods

aic() → {double}

Akaike Information Criterion (AIC) for the fitted model.
Source:
Returns:
Type
double

degreesOfFreedom() → {double}

Degrees of freedom.
Source:
Returns:
Type
double

deviance() → {double}

The deviance for the fitted model.
Source:
Returns:
Type
double

dispersion() → {double}

The dispersion of the fitted model.
Source:
Returns:
Type
double

nullDeviance() → {double}

The deviance for the null model.
Source:
Returns:
Type
double

predictions() → {module:eclairjs/sql.Dataset}

Predictions output by the model's `transform` method.
Source:
Returns:
Type
module:eclairjs/sql.Dataset

residualDegreeOfFreedom() → {int}

The residual degrees of freedom.
Source:
Returns:
Type
int

residualDegreeOfFreedomNull() → {int}

The residual degrees of freedom for the null model.
Source:
Returns:
Type
int

residuals(residualsTypeopt) → {module:eclairjs/sql.Dataset}

Get the residuals of the fitted model by type.
Parameters:
Name Type Attributes Description
residualsType string <optional>
The type of residuals which should be returned. Supported options: deviance, pearson, working and response.
Source:
Returns:
Type
module:eclairjs/sql.Dataset