new DenseMatrix(numRows, numCols, values, isTransposed)
Parameters:
Name | Type | Description |
---|---|---|
numRows |
number | |
numCols |
number | |
values |
Array.<number> | |
isTransposed |
boolean |
Extends
Methods
(static) diag(vector) → {module:eclairjs/mllib/linalg.DenseMatrix}
Generate a diagonal matrix in `DenseMatrix` format from the supplied values.
Parameters:
Name | Type | Description |
---|---|---|
vector |
module:eclairjs/mllib/linalg.Vector | a `Vector` that will form the values on the diagonal of the matrix on the diagonal |
Returns:
Square `DenseMatrix` with size `values.length` x `values.length` and `values`
(static) eye(n) → {module:eclairjs/mllib/linalg.DenseMatrix}
Generate an Identity Matrix in `DenseMatrix` format.
Parameters:
Name | Type | Description |
---|---|---|
n |
number | number of rows and columns of the matrix |
Returns:
`DenseMatrix` with size `n` x `n` and values of ones on the diagonal
(static) ones(numRows, numCols) → {module:eclairjs/mllib/linalg.DenseMatrix}
Generate a `DenseMatrix` consisting of ones.
Parameters:
Name | Type | Description |
---|---|---|
numRows |
number | number of rows of the matrix |
numCols |
number | number of columns of the matrix |
Returns:
`DenseMatrix` with size `numRows` x `numCols` and values of ones
(static) rand(numRows, numCols, rng) → {module:eclairjs/mllib/linalg.DenseMatrix}
Generate a `DenseMatrix` consisting of `i.i.d.` uniform random numbers.
Parameters:
Name | Type | Description |
---|---|---|
numRows |
number | number of rows of the matrix |
numCols |
number | number of columns of the matrix |
rng |
Random | a random number generator |
Returns:
`DenseMatrix` with size `numRows` x `numCols` and values in U(0, 1)
(static) randn(numRows, numCols, rng) → {module:eclairjs/mllib/linalg.DenseMatrix}
Generate a `DenseMatrix` consisting of `i.i.d.` gaussian random numbers.
Parameters:
Name | Type | Description |
---|---|---|
numRows |
number | number of rows of the matrix |
numCols |
number | number of columns of the matrix |
rng |
Random | a random number generator |
Returns:
`DenseMatrix` with size `numRows` x `numCols` and values in N(0, 1)
(static) zeros(numRows, numCols) → {module:eclairjs/mllib/linalg.DenseMatrix}
Generate a `DenseMatrix` consisting of zeros.
Parameters:
Name | Type | Description |
---|---|---|
numRows |
number | number of rows of the matrix |
numCols |
number | number of columns of the matrix |
Returns:
`DenseMatrix` with size `numRows` x `numCols` and values of zeros
$init$() → (nullable) {?}
- Inherited From:
- Source:
Returns:
- Type
- ?
apply(i, j) → {number}
Parameters:
Name | Type | Description |
---|---|---|
i |
number | |
j |
number |
- Overrides:
- Source:
Returns:
- Type
- number
copy() → {module:eclairjs/mllib/linalg.DenseMatrix}
- Overrides:
- Source:
Returns:
equals(o) → {boolean}
Parameters:
Name | Type | Description |
---|---|---|
o |
object |
Returns:
- Type
- boolean
hashCode() → {number}
Returns:
- Type
- number
multiply0(y) → {module:eclairjs/mllib/linalg.DenseMatrix}
Parameters:
Name | Type | Description |
---|---|---|
y |
module:eclairjs/mllib/linalg.DenseMatrix |
- Inherited From:
- Source:
Returns:
multiply1(y) → {module:eclairjs/mllib/linalg.DenseVector}
Parameters:
Name | Type | Description |
---|---|---|
y |
module:eclairjs/mllib/linalg.DenseVector |
- Inherited From:
- Source:
Returns:
multiply2(y) → {module:eclairjs/mllib/linalg.DenseVector}
Parameters:
Name | Type | Description |
---|---|---|
y |
module:eclairjs/mllib/linalg.Vector |
- Inherited From:
- Source:
Returns:
numActives() → {number}
- Overrides:
- Source:
Returns:
- Type
- number
numCols() → {number}
- Inherited From:
- Source:
Returns:
- Type
- number
numNonzeros() → {number}
- Overrides:
- Source:
Returns:
- Type
- number
numRows() → {number}
- Inherited From:
- Source:
Returns:
- Type
- number
toArray() → {Array.<number>}
- Inherited From:
- Source:
Returns:
- Type
- Array.<number>
toSparse() → {module:eclairjs/mllib/linalg.SparseMatrix}
Generate a `SparseMatrix` from the given `DenseMatrix`. The new matrix will have isTransposed
set to false.
Returns:
toString(maxLinesopt, maxLineWidthopt) → {string}
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
maxLines |
integer |
<optional> |
|
maxLineWidth |
integer |
<optional> |
- Inherited From:
- Source:
Returns:
- Type
- string
transpose() → {module:eclairjs/mllib/linalg.DenseMatrix}
- Overrides:
- Source: