new MultilabelMetrics(predictionAndLabels, predictionAndLabels)
Evaluator for multilabel classification.
Parameters:
Name | Type | Description |
---|---|---|
predictionAndLabels |
an RDD of (predictions, labels) pairs, both are non-null Arrays, each with unique elements. | |
predictionAndLabels |
module:eclairjs.RDD |
Methods
accuracy() → {float}
Returns accuracy
Returns:
- Type
- float
f1Measure(labelopt) → {float}
Returns document-based f1-measure averaged by the number of documents
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
label |
float |
<optional> |
Returns f1-measure for a given label (category) |
Returns:
- Type
- float
hammingLoss() → {float}
Returns Hamming-loss
Returns:
- Type
- float
labels() → {Array.<float>}
Returns the sequence of labels in ascending order
Returns:
- Type
- Array.<float>
microF1Measure() → {float}
Returns micro-averaged label-based f1-measure (equals to micro-averaged document-based f1-measure)
Returns:
- Type
- float
microPrecision() → {float}
Returns micro-averaged label-based precision (equals to micro-averaged document-based precision)
Returns:
- Type
- float
microRecall() → {float}
Returns micro-averaged label-based recall (equals to micro-averaged document-based recall)
Returns:
- Type
- float
precision(labelopt) → {float}
Returns document-based precision averaged by the number of documents
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
label |
float |
<optional> |
Returns precision for a given label (category) |
Returns:
- Type
- float
recall(labelopt) → {float}
Returns document-based recall averaged by the number of documents
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
label |
float |
<optional> |
Returns recall for a given label (category) |
Returns:
- Type
- float
subsetAccuracy() → {float}
Returns subset accuracy (for equal sets of labels)
Returns:
- Type
- float