new MultilabelMetrics(predictionAndLabels, predictionAndLabels)
    Evaluator for multilabel classification.
    Parameters:
| Name | Type | Description | 
|---|---|---|
| predictionAndLabels | an RDD of (predictions, labels) pairs, both are non-null Arrays, each with unique elements. | |
| predictionAndLabels | module:eclairjs.RDD | 
Methods
accuracy() → {float}
    Returns accuracy
Returns:
- Type
- float
f1Measure(labelopt) → {float}
    Returns document-based f1-measure averaged by the number of documents
    Parameters:
| Name | Type | Attributes | Description | 
|---|---|---|---|
| label | float | <optional> | Returns f1-measure for a given label (category) | 
Returns:
- Type
- float
hammingLoss() → {float}
    Returns Hamming-loss
Returns:
- Type
- float
labels() → {Array.<float>}
    Returns the sequence of labels in ascending order
Returns:
- Type
- Array.<float>
microF1Measure() → {float}
    Returns micro-averaged label-based f1-measure (equals to micro-averaged document-based f1-measure)
Returns:
- Type
- float
microPrecision() → {float}
    Returns micro-averaged label-based precision (equals to micro-averaged document-based precision)
Returns:
- Type
- float
microRecall() → {float}
    Returns micro-averaged label-based recall (equals to micro-averaged document-based recall)
Returns:
- Type
- float
precision(labelopt) → {float}
    Returns document-based precision averaged by the number of documents
    Parameters:
| Name | Type | Attributes | Description | 
|---|---|---|---|
| label | float | <optional> | Returns precision for a given label (category) | 
Returns:
- Type
- float
recall(labelopt) → {float}
    Returns document-based recall averaged by the number of documents
    Parameters:
| Name | Type | Attributes | Description | 
|---|---|---|---|
| label | float | <optional> | Returns recall for a given label (category) | 
Returns:
- Type
- float
subsetAccuracy() → {float}
    Returns subset accuracy (for equal sets of labels)
Returns:
- Type
- float