Constructor
new DataStreamReader()
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Methods
csv(path) → {DataFrame}
Loads a CSV file stream and returns the result as a DataFrame.
This function will go through the input once to determine the input schema if `inferSchema`
is enabled. To avoid going through the entire data once, disable `inferSchema` option or
specify the schema explicitly using schema.
You can set the following CSV-specific options to deal with CSV files:
`maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
considered in every trigger.
`sep` (default `,`): sets the single character as a separator for each
field and value.
`encoding` (default `UTF-8`): decodes the CSV files by the given encoding
type.
`quote` (default `"`): sets the single character used for escaping quoted values where
the separator can be part of the value. If you would like to turn off quotations, you need to
set not `null` but an empty string. This behaviour is different form
`com.databricks.spark.csv`.
`escape` (default `\`): sets the single character used for escaping quotes inside
an already quoted value.
`comment` (default empty string): sets the single character used for skipping lines
beginning with this character. By default, it is disabled.
`header` (default `false`): uses the first line as names of columns.
`inferSchema` (default `false`): infers the input schema automatically from data. It
requires one extra pass over the data.
`ignoreLeadingWhiteSpace` (default `false`): defines whether or not leading whitespaces
from values being read should be skipped.
`ignoreTrailingWhiteSpace` (default `false`): defines whether or not trailing
whitespaces from values being read should be skipped.
`nullValue` (default empty string): sets the string representation of a null value.
`nanValue` (default `NaN`): sets the string representation of a non-number" value.
`positiveInf` (default `Inf`): sets the string representation of a positive infinity
value.
`negativeInf` (default `-Inf`): sets the string representation of a negative infinity
value.
`dateFormat` (default `null`): sets the string that indicates a date format. Custom date
formats follow the formats at `java.text.SimpleDateFormat`. This applies to both date type
and timestamp type. By default, it is `null` which means trying to parse times and date by
`java.sql.Timestamp.valueOf()` and `java.sql.Date.valueOf()`.
`maxColumns` (default `20480`): defines a hard limit of how many columns
a record can have.
`maxCharsPerColumn` (default `1000000`): defines the maximum number of characters allowed
for any given value being read.
`mode` (default `PERMISSIVE`): allows a mode for dealing with corrupt records
during parsing.
- `PERMISSIVE` : sets other fields to `null` when it meets a corrupted record. When a schema is set by user, it sets `null` for extra fields.
- `DROPMALFORMED` : ignores the whole corrupted records.
- `FAILFAST` : throws an exception when it meets corrupted records.
Parameters:
Name | Type | Description |
---|---|---|
path |
string |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
- Type
- DataFrame
format(source) → {module:eclairjs/sql/streaming.DataStreamReader}
Specifies the input data source format.
Parameters:
Name | Type | Description |
---|---|---|
source |
string |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
format(key, value) → {module:eclairjs/sql/streaming.DataStreamReader}
Adds an input option for the underlying data source.
Parameters:
Name | Type | Description |
---|---|---|
key |
string | |
value |
boolean |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
format(key, value) → {module:eclairjs/sql/streaming.DataStreamReader}
Adds an input option for the underlying data source.
Parameters:
Name | Type | Description |
---|---|---|
key |
string | |
value |
number |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
format(key, value) → {module:eclairjs/sql/streaming.DataStreamReader}
Adds an input option for the underlying data source.
Parameters:
Name | Type | Description |
---|---|---|
key |
string | |
value |
number |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
json(path) → {DataFrame}
Loads a JSON file stream (one object per line) and returns the result as a DataFrame.
This function goes through the input once to determine the input schema. If you know the
schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following JSON-specific options to deal with non-standard JSON files:
`maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
considered in every trigger.
`primitivesAsString` (default `false`): infers all primitive values as a string type
`prefersDecimal` (default `false`): infers all floating-point values as a decimal
type. If the values do not fit in decimal, then it infers them as doubles.
`allowComments` (default `false`): ignores Java/C++ style comment in JSON records
`allowUnquotedFieldNames` (default `false`): allows unquoted JSON field names
`allowSingleQuotes` (default `true`): allows single quotes in addition to double quotes
`allowNumericLeadingZeros` (default `false`): allows leading zeros in numbers
(e.g. 00012)
`allowBackslashEscapingAnyCharacter` (default `false`): allows accepting quoting of all
character using backslash quoting mechanism
`mode` (default `PERMISSIVE`): allows a mode for dealing with corrupt records
during parsing.
`columnNameOfCorruptRecord` (default is the value specified in
`spark.sql.columnNameOfCorruptRecord`): allows renaming the new field having malformed string
created by `PERMISSIVE` mode. This overrides `spark.sql.columnNameOfCorruptRecord`.
- `PERMISSIVE` : sets other fields to `null` when it meets a corrupted record, and puts the malformed string into a new field configured by `columnNameOfCorruptRecord`. When a schema is set by user, it sets `null` for extra fields.
- `DROPMALFORMED` : ignores the whole corrupted records.
- `FAILFAST` : throws an exception when it meets corrupted records.
Parameters:
Name | Type | Description |
---|---|---|
path |
string |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
- Type
- DataFrame
load(pathopt) → {DataFrame}
Loads input in as a DataFrame, for data streams that read from some path.
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
path |
string |
<optional> |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
- Type
- DataFrame
option(key, value) → {module:eclairjs/sql/streaming.DataStreamReader}
Adds an input option for the underlying data source.
Parameters:
Name | Type | Description |
---|---|---|
key |
string | |
value |
string |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
optionswithMap(options) → {module:eclairjs/sql/streaming.DataStreamReader}
Adds input options for the underlying data source.
Parameters:
Name | Type | Description |
---|---|---|
options |
Map |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
parquet(path) → {DataFrame}
Loads a Parquet file stream, returning the result as a DataFrame.
You can set the following Parquet-specific option(s) for reading Parquet files:
`maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
considered in every trigger.
`mergeSchema` (default is the value specified in `spark.sql.parquet.mergeSchema`): sets
whether we should merge schemas collected from all Parquet part-files. This will override
`spark.sql.parquet.mergeSchema`.
Parameters:
Name | Type | Description |
---|---|---|
path |
string |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
- Type
- DataFrame
schema(schema) → {module:eclairjs/sql/streaming.DataStreamReader}
Specifies the input schema. Some data sources (e.g. JSON) can infer the input schema
automatically from data. By specifying the schema here, the underlying data source can
skip the schema inference step, and thus speed up data loading.
Parameters:
Name | Type | Description |
---|---|---|
schema |
module:eclairjs/sql/types.StructType |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
text(path) → {DataFrame}
Loads text files and returns a DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any.
Each line in the text files is a new row in the resulting DataFrame. For example:
Parameters:
Name | Type | Description |
---|---|---|
path |
string |
- Since:
- EclairJS 0.7 Spark 2.0.0
- Source:
Returns:
- Type
- DataFrame
Example
// Scala:
spark.readStream.text("/path/to/directory/")
// Java:
spark.readStream().text("/path/to/directory/")
You can set the following text-specific options to deal with text files:
<li>`maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
considered in every trigger.</li>