new SVMModel(weights, intercept, weights, intercept)
Model for Support Vector Machines (SVMs).
Parameters:
Name | Type | Description |
---|---|---|
weights |
Weights computed for every feature. | |
intercept |
Intercept computed for this model. | |
weights |
module:eclairjs/mllib/linalg.Vector | |
intercept |
float |
Methods
(static) load(sc, path) → {module:eclairjs/mllib/classification.SVMModel}
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | |
path |
string |
Returns:
clearThreshold() → {module:eclairjs/mllib/classification.SVMModel}
Clears the threshold so that `predict` will output raw prediction scores.
Returns:
getThreshold() → {number}
Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions.
Returns:
- Type
- number
intercept() → {float}
Returns:
- Type
- float
save(sc, path)
Parameters:
Name | Type | Description |
---|---|---|
sc |
module:eclairjs.SparkContext | |
path |
string |
setThreshold(threshold)
Sets the threshold that separates positive predictions from negative predictions. An example
with prediction score greater than or equal to this threshold is identified as an positive,
and negative otherwise. The default value is 0.0.
Parameters:
Name | Type | Description |
---|---|---|
threshold |
float |
Returns:
toString() → {string}
Returns:
- Type
- string