/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
(function () {
var JavaWrapper = require(EclairJS_Globals.NAMESPACE + '/JavaWrapper');
var Logger = require(EclairJS_Globals.NAMESPACE + '/Logger');
var Utils = require(EclairJS_Globals.NAMESPACE + '/Utils');
var ClassificationModel = require(EclairJS_Globals.NAMESPACE + '/mllib/classification/ClassificationModel');
/**
* Model for Support Vector Machines (SVMs).
*
* @param weights Weights computed for every feature.
* @param intercept Intercept computed for this model.
* @memberof module:eclairjs/mllib/classification
* @classdesc
* @param {module:eclairjs/mllib/linalg.Vector} weights
* @param {float} intercept
* @class
*/
var SVMModel = function (weights, intercept) {
var jvmObject;
if (arguments[0] instanceof org.apache.spark.mllib.classification.SVMModel) {
jvmObject = arguments[0];
} else {
jvmObject = new org.apache.spark.mllib.classification.SVMModel(Utils.unwrapObject(weights), intercept);
}
this.logger = Logger.getLogger("SVMModel_js");
ClassificationModel.call(this, jvmObject);
};
SVMModel.prototype = Object.create(ClassificationModel.prototype);
SVMModel.prototype.constructor = SVMModel;
/**
* Sets the threshold that separates positive predictions from negative predictions. An example
* with prediction score greater than or equal to this threshold is identified as an positive,
* and negative otherwise. The default value is 0.0.
* @param {float} threshold
* @returns {}
*/
SVMModel.prototype.setThreshold = function (threshold) {
var javaObject = this.getJavaObject().setThreshold(threshold);
return new (javaObject);
};
/**
* Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions.
* @returns {number}
*/
SVMModel.prototype.getThreshold = function () {
return this.getJavaObject().getThreshold();
};
/**
* Clears the threshold so that `predict` will output raw prediction scores.
* @returns {module:eclairjs/mllib/classification.SVMModel}
*/
SVMModel.prototype.clearThreshold = function () {
var javaObject = this.getJavaObject().clearThreshold();
return new SVMModel(javaObject);
};
/**
* @returns {module:eclairjs/mllib/linalg.Vector}
*/
SVMModel.prototype.weights = function () {
var javaObject = this.getJavaObject().weights();
return Utils.javaToJs(javaObject);
};
/**
* @returns {float}
*/
SVMModel.prototype.intercept = function () {
return this.getJavaObject().intercept();
};
/**
* @param {module:eclairjs.SparkContext} sc
* @param {string} path
*/
SVMModel.prototype.save = function (sc, path) {
var sc_uw = Utils.unwrapObject(sc);
this.getJavaObject().save(sc_uw.sc(),path);
};
/**
* @returns {string}
*/
SVMModel.prototype.toString = function () {
return this.getJavaObject().toString();
};
//
// static methods
//
/**
* @param {module:eclairjs.SparkContext} sc
* @param {string} path
* @returns {module:eclairjs/mllib/classification.SVMModel}
*/
SVMModel.load = function (sc, path) {
var sc_uw = Utils.unwrapObject(sc);
var javaObject = org.apache.spark.mllib.classification.SVMModel.load(sc_uw.sc(),path);
return new SVMModel(javaObject);
};
module.exports = SVMModel;
})();