Class: SparkContext

eclairjs. SparkContext

A JavaScript-friendly version of SparkContext that returns RDDs Only one SparkContext may be active per JVM. You must stop() the active SparkContext before creating a new one. This limitation may eventually be removed; see SPARK-2243 for more details.

Constructor

new SparkContext(conf)

Parameters:
Name Type Description
conf module:eclairjs.SparkConf a object specifying Spark parameters
Source:

Methods

accumulable(initialValue, param, name) → {module:eclairjs.Accumulable}

Create an Accumulable shared variable of the given type, to which tasks can "add" values with add. Only the master can access the accumuable's value.
Parameters:
Name Type Description
initialValue object
param module:eclairjs.AccumulableParam
name string of the accumulator for display in Spark's web UI.
Source:
Returns:
Type
module:eclairjs.Accumulable

accumulator(initialValue, nameopt, paramopt) → {module:eclairjs.Accumulator}

Create an Accumulator variable, which tasks can "add" values to using the add method. Only the master can access the accumulator's value.
Parameters:
Name Type Attributes Description
initialValue int | float
name string | AccumulableParam <optional>
of the accumulator for display in Spark's web UI. or param. defaults to FloatAccumulatorParam
param module:eclairjs.AccumulableParam <optional>
defaults to FloatAccumulatorParam, use only if also specifying name
Source:
Returns:
Type
module:eclairjs.Accumulator

addCustomModules()

Zip up all required files not in JAR to preserve paths and add it to worker node for download via addFile.
Source:

addFile(path)

Add a file to be downloaded with this Spark job on every node. The path passed can be either a local file, a file in HDFS (or other Hadoop-supported filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs, use SparkFiles.get(fileName) to find its download location.
Parameters:
Name Type Description
path string Path to the file
Source:

addJar(path)

Adds a JAR dependency for all tasks to be executed on this SparkContext in the future. The path passed can be either a local file, a file in HDFS (or other Hadoop-supported filesystems), or an HTTP, HTTPS or FTP URI.
Parameters:
Name Type Description
path string Path to the jar
Source:

addModule()

Zip up a file in a directory to preserve it's path and add it to worker node for download via addFile.
Source:

applicationAttemptId() → {string}

Source:
Returns:
Type
string

applicationId() → {string}

A unique identifier for the Spark application. Its format depends on the scheduler implementation. (i.e. in case of local spark app something like 'local-1433865536131' in case of YARN something like 'application_1433865536131_34483' )
Source:
Returns:
Type
string

appName() → {string}

Source:
Returns:
Type
string

broadcast(value) → {module:eclairjs/broadcast.Broadcast}

Broadcast a read-only variable to the cluster, returning a Broadcast object for reading it in distributed functions. The variable will be sent to each cluster only once.
Parameters:
Name Type Description
value object JSON object.
Source:
Returns:
Type
module:eclairjs/broadcast.Broadcast

clearJobGroup()

clearJobGroup
Source:

files() → {Array.<string>}

Source:
Returns:
Type
Array.<string>

floatAccumulator(initialValue, name) → {module:eclairjs.Accumulator}

Create an Accumulator float variable, which tasks can "add" values to using the add method. Only the master can access the accumulator's value.
Parameters:
Name Type Description
initialValue float
name string of the accumulator for display in Spark's web UI.
Source:
Returns:
Type
module:eclairjs.Accumulator

getConf() → {module:eclairjs.SparkConf}

Return a copy of this SparkContext's configuration. The configuration ''cannot'' be changed at runtime.
Source:
Returns:
Type
module:eclairjs.SparkConf

getHadoopConfiguration(key) → {string}

Get the value of the name property of the Hadoop Configuration for the Hadoop code (e.g. file systems) that we reuse. '''Note:''' As it will be reused in all Hadoop RDDs, it's better not to modify it unless you plan to set some global configurations for all Hadoop RDDs. , null if no such property exists.
Parameters:
Name Type Description
key
Source:
Returns:
Type
string

getLocalProperty(key) → {string}

Get a local property set in this thread, or null if it is missing. See setLocalProperty.
Parameters:
Name Type Description
key string
Source:
Returns:
Type
string

intAccumulator(initialValue, name) → {module:eclairjs.Accumulator}

Create an Accumulator integer variable, which tasks can "add" values to using the add method. Only the master can access the accumulator's value.
Parameters:
Name Type Description
initialValue int
name string of the accumulator for display in Spark's web UI.
Source:
Returns:
Type
module:eclairjs.Accumulator

isLocal() → {boolean}

Source:
Returns:
Type
boolean

isStopped() → {boolean}

Source:
Returns:
true if context is stopped or in the midst of stopping.
Type
boolean

jars() → {Array.<string>}

Source:
Returns:
Type
Array.<string>

listFiles() → {Array.<string>}

Returns a list of file paths that are added to resources.
Source:
Returns:
Type
Array.<string>

master() → {string}

Source:
Returns:
Type
string

objectFile(path, minPartitionsopt) → {module:eclairjs.RDD}

Load an RDD saved as a SequenceFile containing serialized objects, with NullWritable keys and BytesWritable values that contain a serialized partition. This is still an experimental storage format and may not be supported exactly as is in future releases.
Parameters:
Name Type Attributes Description
path string
minPartitions integer <optional>
Source:
Returns:
Type
module:eclairjs.RDD

parallelize(list, numSlicesopt) → {module:eclairjs.RDD}

Distribute a local Scala collection to form an RDD.
Parameters:
Name Type Attributes Description
list array
numSlices integer <optional>
Source:
Returns:
Type
module:eclairjs.RDD

parallelizePairs(list, numSlices) → {module:eclairjs.PairRDD}

Distribute a local collection to form an RDD.
Parameters:
Name Type Description
list array array of Tuple 2
numSlices integer
Source:
Returns:
Type
module:eclairjs.PairRDD

range(start, end, step, numSlices) → {module:eclairjs.RDD}

Creates a new RDD[Long] containing elements from `start` to `end`(exclusive), increased by `step` every element.
Parameters:
Name Type Description
start number the start value.
end number the end value.
step number the incremental step
numSlices number the partition number of the new RDD.
Source:
Returns:
Type
module:eclairjs.RDD

register(acc, nameopt)

Register the given accumulator. Note that accumulators must be registered before use, or it will throw exception.
Parameters:
Name Type Attributes Description
acc module:eclairjs/util.AccumulatorV2
name string <optional>
Source:

setCheckpointDir(dir)

Set the directory under which RDDs are going to be checkpointed. The directory must be a HDFS path if running on a cluster.
Parameters:
Name Type Description
dir string
Source:

setHadoopConfiguration(key, value) → {void}

Set the value of the name property of the Hadoop Configuration for the Hadoop code (e.g. file systems) that we reuse. '''Note:''' As it will be reused in all Hadoop RDDs, it's better not to modify it unless you plan to set some global configurations for all Hadoop RDDs.
Parameters:
Name Type Description
key
value
Source:
Returns:
Type
void
Example
sparkContext.setHadoopConfiguration("fs.swift.service.softlayer.auth.url", "https://identity.open.softlayer.com/v3/auth/tokens");
 sparkContext.setHadoopConfiguration("fs.swift.service.softlayer.auth.endpoint.prefix", "endpoints");
 sparkContext.setHadoopConfiguration("fs.swift.service.softlayer.tenant", "productid"); // IBM BlueMix Object Store product id
 sparkContext.setHadoopConfiguration("fs.swift.service.softlayer.username", "userid"); // IBM BlueMix Object Store user id
 sparkContext.setHadoopConfiguration("fs.swift.service.softlayer.password", "secret"); // IBM BlueMix Object Store password
 sparkContext.setHadoopConfiguration("fs.swift.service.softlayer.apikey", "secret"); // IBM BlueMix Object Store password

 var rdd = sparkContext.textFile("swift://wordcount.softlayer/dream.txt").cache();

setJobDescription(value)

Parameters:
Name Type Description
value string
Source:

setJobGroup(groupId, description, interruptOnCancel)

Assigns a group ID to all the jobs started by this thread until the group ID is set to a different value or cleared. Often, a unit of execution in an application consists of multiple Spark actions or jobs. Application programmers can use this method to group all those jobs together and give a group description. Once set, the Spark web UI will associate such jobs with this group. The application can also use cancelJobGroup to cancel all running jobs in this group. For example,
Parameters:
Name Type Description
groupId string
description string
interruptOnCancel boolean
Source:

setLocalProperty(key, value)

Set a local property that affects jobs submitted from this thread, such as the Spark fair scheduler pool. User-defined properties may also be set here. These properties are propagated through to worker tasks and can be accessed there via [[org.apache.spark.TaskContext#getLocalProperty]]. These properties are inherited by child threads spawned from this thread. This may have unexpected consequences when working with thread pools. The standard java implementation of thread pools have worker threads spawn other worker threads. As a result, local properties may propagate unpredictably.
Parameters:
Name Type Description
key string
value string
Source:

setLogLevel(logLevel)

Parameters:
Name Type Description
logLevel string The desired log level as a string. Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN
Source:

statusTracker() → {SparkStatusTracker}

Source:
Returns:
Type
SparkStatusTracker

stop()

Shut down the SparkContext.
Source:

textFile(path, minPartitionsopt) → {module:eclairjs.RDD}

Read a text file from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI, and return it as an RDD of Strings.
Parameters:
Name Type Attributes Description
path string path to file
minPartitions int <optional>
Source:
Returns:
Type
module:eclairjs.RDD

uiWebUrl() → {string}

Source:
Returns:
Type
string

version() → {string}

The version of EclairJS and Spark on which this application is running.
Source:
Returns:
Type
string

wholeTextFiles(path, minPartitions) → {module:eclairjs.RDD}

Read a directory of text files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file.

For example, if you have the following files:

Parameters:
Name Type Description
path string Directory to the input data files, the path can be comma separated paths as the list of inputs.
minPartitions number A suggestion value of the minimal splitting number for input data.
Source:
Returns:
Type
module:eclairjs.RDD
Examples
hdfs://a-hdfs-path/part-00000
  hdfs://a-hdfs-path/part-00001
  ...
  hdfs://a-hdfs-path/part-nnnnn


Do `var rdd = sparkContext.wholeTextFile("hdfs://a-hdfs-path")`,

<p> then `rdd` contains
(a-hdfs-path/part-00000, its content)
  (a-hdfs-path/part-00001, its content)
  ...
  (a-hdfs-path/part-nnnnn, its content)