/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
(function () {
var JavaWrapper = require(EclairJS_Globals.NAMESPACE + '/JavaWrapper');
var Logger = require(EclairJS_Globals.NAMESPACE + '/Logger');
var Utils = require(EclairJS_Globals.NAMESPACE + '/Utils');
/**
* Evaluator for regression.
*
* @param predictionAndObservations an RDD of (prediction, observation) pairs.
* @memberof module:eclairjs/mllib/evaluation
* @classdesc
* @param {module:eclairjs.RDD} predictionAndObservations
* @class
*/
var RegressionMetrics = function (predictionAndObservations) {
this.logger = Logger.getLogger("RegressionMetrics_js");
var jvmObject;
if (predictionAndObservations instanceof org.apache.spark.mllib.evaluation.RegressionMetrics) {
jvmObject = predictionAndObservations;
} else {
jvmObject = new org.apache.spark.mllib.evaluation.RegressionMetrics(Utils.unwrapObject(predictionAndObservations).rdd());
}
JavaWrapper.call(this, jvmObject);
};
RegressionMetrics.prototype = Object.create(JavaWrapper.prototype);
RegressionMetrics.prototype.constructor = RegressionMetrics;
/**
* Returns the variance explained by regression.
* explainedVariance = \sum_i (\hat{y_i} - \bar{y})^2 / n
* @see [[https://en.wikipedia.org/wiki/Fraction_of_variance_unexplained]]
* @returns {number}
*/
RegressionMetrics.prototype.explainedVariance = function () {
return this.getJavaObject().explainedVariance();
};
/**
* Returns the mean absolute error, which is a risk function corresponding to the
* expected value of the absolute error loss or l1-norm loss.
* @returns {number}
*/
RegressionMetrics.prototype.meanAbsoluteError = function () {
return this.getJavaObject().meanAbsoluteError();
};
/**
* Returns the mean squared error, which is a risk function corresponding to the
* expected value of the squared error loss or quadratic loss.
* @returns {number}
*/
RegressionMetrics.prototype.meanSquaredError = function () {
return this.getJavaObject().meanSquaredError();
};
/**
* Returns the root mean squared error, which is defined as the square root of
* the mean squared error.
* @returns {number}
*/
RegressionMetrics.prototype.rootMeanSquaredError = function () {
return this.getJavaObject().rootMeanSquaredError();
};
/**
* Returns R^2^, the unadjusted coefficient of determination.
* @see [[http://en.wikipedia.org/wiki/Coefficient_of_determination]]
* @returns {number}
*/
RegressionMetrics.prototype.r2 = function () {
return this.getJavaObject().r2();
};
RegressionMetrics.prototype.toJSON = function () {
var jsonObj = {};
jsonObj.r2 = this.r2();
jsonObj.rootMeanSquaredError = this.rootMeanSquaredError();
jsonObj.meanSquaredError = this.meanSquaredError();
jsonObj.meanAbsoluteError = this.meanAbsoluteError();
jsonObj.explainedVariance = this.explainedVariance();
return jsonObj;
};
module.exports = RegressionMetrics;
})();