Source: eclairjs/mllib/regression/GeneralizedLinearModel.js


/*
 * Copyright 2015 IBM Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
(function () {

    var JavaWrapper = require(EclairJS_Globals.NAMESPACE + '/JavaWrapper');
    var Logger = require(EclairJS_Globals.NAMESPACE + '/Logger');
    var Utils = require(EclairJS_Globals.NAMESPACE + '/Utils');

    /** 
     * @constructor
     * @memberof module:eclairjs/mllib/regression
     * @classdesc GeneralizedLinearModel (GLM) represents a model trained using GeneralizedLinearAlgorithm.
     * GLMs consist of a weight vector and an intercept.
     * @param {module:eclairjs/mllib/linalg.Vector} weights
     * @param {float} intercept
     */
    var GeneralizedLinearModel = function(jvmObj) {
        this.logger = Logger.getLogger("mllib.regression.GeneralizedLinearModel_js");

        JavaWrapper.call(this, jvmObj);
    };

    GeneralizedLinearModel.prototype = Object.create(JavaWrapper.prototype);

    GeneralizedLinearModel.prototype.constructor = GeneralizedLinearModel;
    /**
     * Predict values for a single data point using the model trained.
     * @param {module:eclairjs/mllib/linalg.Vector} testData
     * @returns {float}
     */
    GeneralizedLinearModel.prototype.predict = function(testData) {

        return this.getJavaObject().predict(Utils.unwrapObject(testData));
    };

    module.exports = GeneralizedLinearModel;

})();