/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
(function () {
var JavaWrapper = require(EclairJS_Globals.NAMESPACE + '/JavaWrapper');
var Logger = require(EclairJS_Globals.NAMESPACE + '/Logger');
var Utils = require(EclairJS_Globals.NAMESPACE + '/Utils');
var PowerIterationClusteringModel = require(EclairJS_Globals.NAMESPACE + '/mllib/clustering/PowerIterationClusteringModel');
/**
* @memberof module:eclairjs/mllib/clustering
* @classdesc
* Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100,
* initMode: "random"}.
* @class
*/
var PowerIterationClustering = function() {
this.logger = Logger.getLogger("PowerIterationClustering_js");
var jvmObject;
if (arguments[0]) {
jvmObject = arguments[0];
} else {
jvmObject = new org.apache.spark.mllib.clustering.PowerIterationClustering();
}
JavaWrapper.call(this, jvmObject);
};
PowerIterationClustering.prototype = Object.create(JavaWrapper.prototype);
PowerIterationClustering.prototype.constructor = PowerIterationClustering;
/**
* Set the number of clusters.
* @param {integer} k
* @returns {module:eclairjs/mllib/clustering.PowerIterationClustering}
*/
PowerIterationClustering.prototype.setK = function(k) {
var javaObject = this.getJavaObject().setK(k);
return new PowerIterationClustering(javaObject);
};
/**
* Set maximum number of iterations of the power iteration loop
* @param {integer} maxIterations
* @returns {module:eclairjs/mllib/clustering.PowerIterationClustering}
*/
PowerIterationClustering.prototype.setMaxIterations = function(maxIterations) {
var javaObject = this.getJavaObject().setMaxIterations(maxIterations);
return new PowerIterationClustering(javaObject);
};
/**
* Set the initialization mode. This can be either "random" to use a random vector
* as vertex properties, or "degree" to use normalized sum similarities. Default: random.
* @param {string} mode
* @returns {module:eclairjs/mllib/clustering.PowerIterationClustering}
*/
PowerIterationClustering.prototype.setInitializationMode = function(mode) {
var javaObject = this.getJavaObject().setInitializationMode(mode);
return new PowerIterationClustering(javaObject);
};
/**
* Run the PIC algorithm on Graph.
*
* @param {module:eclairjs.RDD | Graph} similaritiesOrGraph an RDD of (i, j, s,,ij,,) tuples representing the affinity matrix, which is
* the matrix A in the PIC paper. The similarity s,,ij,, must be nonnegative.
* This is a symmetric matrix and hence s,,ij,, = s,,ji,,. For any (i, j) with
* nonzero similarity, there should be either (i, j, s,,ij,,) or
* (j, i, s,,ji,,) in the input. Tuples with i = j are ignored, because we
* assume s,,ij,, = 0.0. Or a graph an affinity matrix represented as graph, which is the matrix A in the PIC paper.
* The similarity s,,ij,, represented as the edge between vertices (i, j) must
* be nonnegative. This is a symmetric matrix and hence s,,ij,, = s,,ji,,. For
* any (i, j) with nonzero similarity, there should be either (i, j, s,,ij,,)
* or (j, i, s,,ji,,) in the input. Tuples with i = j are ignored, because we
* assume s,,ij,, = 0.0.
*
* @returns {module:eclairjs/mllib/clustering.PowerIterationClusteringModel} a [[PowerIterationClusteringModel]] that contains the clustering result
*/
PowerIterationClustering.prototype.run = function(similaritiesOrGraph) {
var graph_uw = Utils.unwrapObject(similaritiesOrGraph);
/*
The RDD<Tuple> we get from Nashorn is a Tuple(Double, Double, Double)
what we need for PowerIterationClustering,run is a RDD<Tuple3<Long, Long, Double>>
the only way to accomplish this is to RDD.map() the RDD from what we are given to what is required.
then give the resulting RDD to the run().
*/
var rdd = graph_uw.map(
new org.eclairjs.nashorn.mllib.clustering.PowerIterationClusteringRunFunction()
);
var javaObject = this.getJavaObject().run(rdd);
return new PowerIterationClusteringModel(javaObject);
};
module.exports = PowerIterationClustering;
})();