/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
(function () {
var JavaWrapper = require(EclairJS_Globals.NAMESPACE + '/JavaWrapper');
var Logger = require(EclairJS_Globals.NAMESPACE + '/Logger');
var Utils = require(EclairJS_Globals.NAMESPACE + '/Utils');
/**
* Represents a classification model that predicts to which of a set of categories an example
* belongs. The categories are represented by double values: 0.0, 1.0, 2.0, etc.
* @classdesc
* @class
* @memberof module:eclairjs/mllib/classification
*
*
*/
var ClassificationModel = function(jvmObject) {
this.logger = Logger.getLogger("ClassificationModel_js");
JavaWrapper.call(this, jvmObject);
};
ClassificationModel.prototype = Object.create(JavaWrapper.prototype);
ClassificationModel.prototype.constructor = ClassificationModel;
/**
* Predict values for the given data set using the model trained.
*
* @param {module:eclairjs.RDD | module:eclairjs/mllib/linalg.Vector} testData RDD representing data points to be predicted or Vector array representing a single data point
* @returns {module:eclairjs.RDD | float} an RDD[float] where each entry contains the corresponding prediction or float predicted category from the trained model
*/
ClassificationModel.prototype.predict = function(testData) {
var testData_uw = Utils.unwrapObject(testData);
var javaObject = this.getJavaObject().predict(testData_uw);
return Utils.javaToJs(javaObject);
};
module.exports = ClassificationModel;
})();