/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
(function () {
var GeneralizedLinearRegressionSummary = require(EclairJS_Globals.NAMESPACE + '/ml/regression/GeneralizedLinearRegressionSummary');
var Logger = require(EclairJS_Globals.NAMESPACE + '/Logger');
var Utils = require(EclairJS_Globals.NAMESPACE + '/Utils');
//var GeneralizedLinearRegressionTrainingSummary = Java.type('org.apache.spark.ml.regression.GeneralizedLinearRegressionTrainingSummary');
/**
* @classdesc
* :: Experimental ::
* Summary of {@link GeneralizedLinearRegression} fitting and model.
*
* @param dataset Dataset to be summarized.
* @param origModel Model to be summarized. This is copied to create an internal
* model which cannot be modified from outside.
* @param diagInvAtWA diagonal of matrix (A^T * W * A)^-1 in the last iteration
* @param numIterations number of iterations
* @param solver the solver algorithm used for model training
* @class
* @memberof module:eclairjs/ml/regression
* @extends module:eclairjs/ml/regression.GeneralizedLinearRegressionSummary
*/
var GeneralizedLinearRegressionTrainingSummary = function(jvmObject) {
this.logger = Logger.getLogger("ml_regression_GeneralizedLinearRegressionTrainingSummary_js");
GeneralizedLinearRegressionSummary.call(this, jvmObject);
};
GeneralizedLinearRegressionTrainingSummary.prototype = Object.create(GeneralizedLinearRegressionSummary.prototype);
GeneralizedLinearRegressionTrainingSummary.prototype.constructor = GeneralizedLinearRegressionTrainingSummary;
/**
* Standard error of estimated coefficients and intercept.
* @returns {float[]}
*/
GeneralizedLinearRegressionTrainingSummary.prototype.coefficientStandardErrors = function () {
return Utils.javaToJs(this.getJavaObject().coefficientStandardErrors());
};
/**
* T-statistic of estimated coefficients and intercept.
* @returns {double[]}
*/
GeneralizedLinearRegressionTrainingSummary.prototype.tValues = function () {
return Utils.javaToJs(this.getJavaObject().tValues());
};
/**
* Two-sided p-value of estimated coefficients and intercept.
* @returns {double[]}
*/
GeneralizedLinearRegressionTrainingSummary.prototype.pValues = function () {
return Utils.javaToJs(this.getJavaObject().pValues());
};
module.exports = GeneralizedLinearRegressionTrainingSummary;
})();