/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
(function () {
var LogisticRegressionSummary = require(EclairJS_Globals.NAMESPACE + '/ml/classification/LogisticRegressionSummary');
var Logger = require(EclairJS_Globals.NAMESPACE + '/Logger');
var Utils = require(EclairJS_Globals.NAMESPACE + '/Utils');
/**
* @classdesc
* Abstraction for multinomial Logistic Regression Training results.
* Currently, the training summary ignores the training weights except
* for the objective trace.
* @class
* @memberof module:eclairjs/ml/classification
* @extends module:eclairjs/ml/classification.LogisticRegressionSummary
*/
var LogisticRegressionTrainingSummary = function(jvmObject) {
this.logger = Logger.getLogger("LogisticRegressionTrainingSummary_js");
LogisticRegressionSummary.call(this, jvmObject);
};
LogisticRegressionTrainingSummary.prototype = Object.create(LogisticRegressionSummary.prototype);
LogisticRegressionTrainingSummary.prototype.constructor = LogisticRegressionTrainingSummary;
/**
* objective function (scaled loss + regularization) at each iteration.
* @returns {float[]}
*/
LogisticRegressionTrainingSummary.prototype.objectiveHistory = function() {
return Utils.javaToJs(this.getJavaObject().objectiveHistory());
};
/**
* Number of training iterations until termination
* @returns {integer}
*/
LogisticRegressionTrainingSummary.prototype.totalIterations = function() {
return this.getJavaObject().totalIterations();
};
module.exports = LogisticRegressionTrainingSummary;
})();