new Loss()
- Source:
 
Methods
computeError(modelOrPrediction, dataOrLabel) → {Promise.<Number>}
    If TreeEnsembleModel, RDD parameters are supplied:
Method to calculate error of the base learner for the gradient boosting calculation or
Note: This method is not used by the gradient boosting algorithm but is useful for debugging purposes.
If float, float parameters are supplied:
Method to calculate loss when the predictions are already known.
Note: This method is used in the method evaluateEachIteration to avoid recomputing the predicted values from previously fit trees.
    Parameters:
| Name | Type | Description | 
|---|---|---|
modelOrPrediction | 
            
            TreeEnsembleModel | float | Model of the weak learner or predicted label (predict only valid with label param). | 
dataOrLabel | 
            
            module:eclairjs/rdd.RDD | float | Training dataset: RDD of LabeledPoint or true label (use of label only valid with prediction param). | 
- Source:
 
Returns:
- Type
 - Promise.<Number>
 
gradient(prediction, label) → {Promise.<Number>}
    Method to calculate the gradients for the gradient boosting calculation.
    Parameters:
| Name | Type | Description | 
|---|---|---|
prediction | 
            
            float | |
label | 
            
            float | 
- Source:
 
Returns:
- Type
 - Promise.<Number>