/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../../utils.js');
var gKernelP;
/**
* Represents a random forest model.
*
* @param algo algorithm for the ensemble model, either Classification or Regression
* @param trees tree ensembles
* @classdesc
*/
/**
* @param {Algo} algo
* @param {DecisionTreeModel[]} trees
* @class
* @memberof module:eclairjs/mllib/tree/model
*/
function RandomForestModel() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
*
* @param {module:eclairjs.SparkContext} sc Spark context used to save model data.
* @param {string} path Path specifying the directory in which to save this model.
* If the directory already exists, this method throws an exception.
* @returns {Promise.<Void>} A Promise that resolves to nothing.
*/
RandomForestModel.prototype.save = function(sc,path) {
var args = {
target: this,
method: 'save',
args: Utils.wrapArguments(arguments)
};
return Utils.generate(args);
};
RandomForestModel.moduleLocation = '/mllib/tree/model/RandomForestModel';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return RandomForestModel;
};