/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../../utils.js');
var gKernelP;
/**
* Represents a gradient boosted trees model.
*
* @param algo algorithm for the ensemble model, either Classification or Regression
* @param trees tree ensembles
* @param treeWeights tree ensemble weights
* @classdesc
* @class
* @memberof module:eclairjs/mllib/tree/model
*/
function GradientBoostedTreesModel() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* @param {module:eclairjs.SparkContext} sc Spark context used to save model data.
* @param {string} path Path specifying the directory in which to save this model.
* If the directory already exists, this method throws an exception.
* @returns {Promise.<Void>} A Promise that resolves to nothing.
*/
GradientBoostedTreesModel.prototype.save = function(sc,path) {
var args = {
target: this,
method: 'save',
args: Utils.wrapArguments(arguments)
};
return Utils.generate(args);
};
/**
* Method to compute error or loss for every iteration of gradient boosting.
* @param {module:eclairjs/rdd.RDD} data RDD of {@link LabeledPoint}
* @param {module:eclairjs/mllib/tree/loss.Loss} loss evaluation metric.
* containing the first i+1 trees
* @returns {Promise.<number[]>} an array with index i having the losses or errors for the ensemble
*/
GradientBoostedTreesModel.prototype.evaluateEachIteration = function(data,loss) {
var args = {
target: this,
method: 'evaluateEachIteration',
args: Utils.wrapArguments(arguments),
returnType: Number
};
return Utils.generate(args);
};
//
// static methods
//
/**
* @param {module:eclairjs.SparkContext} sc Spark context used for loading model files.
* @param {string} path Path specifying the directory to which the model was saved.
* @returns {GradientBoostedTreesModel} Model instance
*/
GradientBoostedTreesModel.load = function(sc,path) {
var args = {
target: GradientBoostedTreesModel,
method: 'load',
args: Utils.wrapArguments(arguments),
static: true,
kernelP: gKernelP,
returnType: GradientBoostedTreesModel
};
return Utils.generate(args);
};
GradientBoostedTreesModel.moduleLocation = '/mllib/tree/model/GradientBoostedTreesModel';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return GradientBoostedTreesModel;
};