/*
* Copyright 2015 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var LinearRegressionModel = require('./LinearRegressionModel.js');
var gKernelP;
/**
* Construct a LinearRegression object with default parameters: {stepSize: 1.0, numIterations: 100, miniBatchFraction: 1.0}.
* @constructor
* @memberof module:eclairjs/mllib/regression
* @classdesc Train a linear regression model with no regularization using Stochastic Gradient Descent.
* This solves the least squares regression formulation f(weights) = 1/n ||A weights-y||^2^ (which is the mean squared error).
* Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with its corresponding right hand side label y.
* See also the documentation for the precise formulation.
*/
function LinearRegressionWithSGD() {
}
LinearRegressionWithSGD.DEFAULT_NUM_ITERATIONS = 100;
/**
* Train a Linear Regression model given an RDD of (label, features) pairs.
* We run a fixed number of iterations of gradient descent using the specified step size.
* Each iteration uses miniBatchFraction fraction of the data to calculate a stochastic gradient.
* The weights used in gradient descent are initialized using the initial weights provided.
*
* @param {module:eclairjs/rdd.RDD} rdd of LabeledPoints1
* @param {integer} numIterations
* @param {float} [stepSize] - step size to be used for each iteration of gradient descent, defaults to 1.0
* @param {floar} [miniBatchFraction] - fraction of data to be used per iteration, defaults to 1.0
* @param {Vactor} [initialWeights] - initial set of weights to be used. Array should be equal in size to the number of features in the data.
* @returns {module:eclairjs/mllib/regression.LinearRegressionModel}
*/
LinearRegressionWithSGD.train = function(rdd, numIterations, miniBatchFraction, initialWeights) {
var args = {
target: LinearRegressionWithSGD,
method: 'train',
args: Utils.wrapArguments(arguments),
static: true,
kernelP: gKernelP,
returnType: LinearRegressionModel
};
return Utils.generate(args);
};
LinearRegressionWithSGD.moduleLocation = '/mllib/regression/LinearRegressionWithSGD';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return LinearRegressionWithSGD;
};