/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var RDD = require('../../rdd/RDD.js');
var FloatRDD = require('../../rdd/FloatRDD.js');
/**
* Regression model for isotonic regression.
*
* @param boundaries Array of boundaries for which predictions are known.
* Boundaries must be sorted in increasing order.
* @param predictions Array of predictions associated to the boundaries at the same index.
* Results of isotonic regression and therefore monotone.
* @param isotonic indicates whether this is isotonic or antitonic.
*
* @memberof module:eclairjs/mllib/regression
* @classdesc
*/
/**
* A Java-friendly constructor that takes two Iterable parameters and one Boolean parameter.
* @param {Iterable} boundaries
* @param {Iterable} predictions
* @param {boolean} isotonic
* @class
*/
function IsotonicRegressionModel(kernelP, refIdP) {
this.kernelP = kernelP;
this.refIdP = refIdP;
}
/**
* Predict labels for provided features, or single label..
* Using a piecewise linear function.
*
* @param {module:eclairjs/rdd.RDD | DoubleRDD | float} testData Features to be labeled, if float.
* 1) If testData exactly matches a boundary then associated prediction is returned.
* In case there are multiple predictions with the same boundary then one of them
* is returned. Which one is undefined (same as java.util.Arrays.binarySearch).
* 2) If testData is lower or higher than all boundaries then first or last prediction
* is returned respectively. In case there are multiple predictions with the same
* boundary then the lowest or highest is returned respectively.
* 3) If testData falls between two values in boundary array then prediction is treated
* as piecewise linear function and interpolated value is returned. In case there are
* multiple values with the same boundary then the same rules as in 2) are used.
*
* @returns {module:eclairjs/rdd.RDD | Promise.<number>} Predicted labels or label.
*/
IsotonicRegressionModel.prototype.predict = function(testData) {
var args = {
target: this,
method: 'predict',
args: Utils.wrapArguments(arguments),
returnType: testData instanceof RDD ? RDD : testData instanceof FloatRDD ? FloatRDD : Number
};
return Utils.generate(args);
};
/**
* @param {module:eclairjs.SparkContext} sc
* @param {string} path
* @returns {Promise.<Void>} A Promise that resolves to nothing.
*/
IsotonicRegressionModel.prototype.save = function(sc, path) {
var args = {
target: this,
method: 'save',
args: Utils.wrapArguments(arguments)
};
return Utils.generate(args);
};
IsotonicRegressionModel.moduleLocation = '/mllib/regression/IsotonicRegressionModel';
module.exports = IsotonicRegressionModel;