/*
* Copyright 2015 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var RDD = require('../../rdd/RDD.js');
var gKernelP;
/**
* Evaluator for regression.
*
* @param predictionAndObservations an RDD of (prediction, observation) pairs.
* @memberof module:eclairjs/mllib/evaluation
* @classdesc
* @param {module:eclairjs/rdd.RDD} predictionAndObservations
* @class
*/
function RegressionMetrics() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* Returns the mean squared error, which is a risk function corresponding to the
* expected value of the squared error loss or quadratic loss.
*
* @returns {Promise.<Number>} A Promise that resolves to the mean squared error.
*/
RegressionMetrics.prototype.meanSquaredError = function() {
var args = {
target: this,
method: 'meanSquaredError',
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns the root mean squared error, which is defined as the square root of
* the mean squared error.
*
* @returns {Promise.<Number>} A Promise that resolves to the root mean squared error.
*/
RegressionMetrics.prototype.rootMeanSquaredError = function() {
var args = {
target: this,
method: 'rootMeanSquaredError',
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns R^2^, the unadjusted coefficient of determination.
* @see [[http://en.wikipedia.org/wiki/Coefficient_of_determination]]
* In case of regression through the origin, the definition of R^2^ is to be modified.
* @see J. G. Eisenhauer, Regression through the Origin. Teaching Statistics 25, 76-80 (2003)
* [[https://online.stat.psu.edu/~ajw13/stat501/SpecialTopics/Reg_thru_origin.pdf]]
*
* @returns {Promise.<Number>} A Promise that resolves to the result.
*/
RegressionMetrics.prototype.r2 = function() {
var args = {
target: this,
method: 'r2',
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns the mean absolute error, which is a risk function corresponding to the
* expected value of the absolute error loss or l1-norm loss.
*
* @returns {Promise.<Number>} A Promise that resolves to the absolute mean.
*/
RegressionMetrics.prototype.meanAbsoluteError = function() {
var args = {
target: this,
method: 'meanAbsoluteError',
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns the variance explained by regression.
* explainedVariance = \sum_i (\hat{y_i} - \bar{y})^2 / n
* @see [[https://en.wikipedia.org/wiki/Fraction_of_variance_unexplained]]
*
* @returns {Promise.<Number>} A Promise that resolves to the variance explained by regression.
*/
RegressionMetrics.prototype.explainedVariance = function() {
var args = {
target: this,
method: 'explainedVariance',
returnType: Number
};
return Utils.generate(args);
};
RegressionMetrics.moduleLocation = '/mllib/evaluation#RegressionMetrics';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return RegressionMetrics;
};