/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var Matrix = require('../linalg/Matrix.js');
var gKernelP;
/**
* ::Experimental::
* Evaluator for multiclass classification.
*
* @memberof module:eclairjs/mllib/evaluation
* @classdesc
* @param {module:eclairjs/rdd.RDD} predictionAndLabels an RDD of (prediction, label) pairs.
* @class
*/
function MulticlassMetrics() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* Returns confusion matrix:
* predicted classes are in columns,
* they are ordered by class label ascending,
* as in "labels"
* @returns {module:eclairjs/mllib/linalg.Matrix}
*/
MulticlassMetrics.prototype.confusionMatrix = function() {
var args = {
target: this,
method: 'confusionMatrix',
returnType: Matrix
};
return Utils.generate(args);
};
/**
* Returns true positive rate for a given label (category)
* @param {number} label the label.
* @returns {Promise.<number>}
*/
MulticlassMetrics.prototype.truePositiveRate = function(label) {
var args = {
target: this,
method: 'truePositiveRate',
args: Utils.wrapArguments(arguments),
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns false positive rate for a given label (category)
* @param {number} label the label.
* @returns {Promise.<number>}
*/
MulticlassMetrics.prototype.falsePositiveRate = function(label) {
var args ={
target: this,
method: 'falsePositiveRate',
args: Utils.wrapArguments(arguments),
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns precision
* @param {float} [label] Returns precision for a given label (category)
* @returns {float}
*/
MulticlassMetrics.prototype.precision = function(label) {
var args ={
target: this,
method: 'precision',
args: Utils.wrapArguments(arguments),
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns recall (equals to precision for multiclass classifier because sum of all false positives is equal to sum of all false negatives)
* @param {float} [label] Returns recall for a given label (category)
* @returns {float}
*/
MulticlassMetrics.prototype.recall = function(label) {
var args ={
target: this,
method: 'recall',
args: Utils.wrapArguments(arguments),
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns f-measure for a given label (category)
* @param {number} label the label.
* @param {number} [beta] the beta parameter.
* @returns {Promise.<number>}
*/
MulticlassMetrics.prototype.fMeasure = function(label,beta) {
var args ={
target: this,
method: 'fMeasure',
args: Utils.wrapArguments(arguments),
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns weighted averaged f-measure
* @param {number} [beta] the beta parameter.
* @returns {number}
*/
MulticlassMetrics.prototype.weightedFMeasure = function(beta) {
var args ={
target: this,
method: 'weightedFMeasure',
args: Utils.wrapArguments(arguments),
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns the sequence of labels in ascending order
* @returns {float[]}
*/
MulticlassMetrics.prototype.labels = function () {
var args = {
target: this,
method: 'labels',
stringify: true,
returnType: [Number]
};
return Utils.generate(args);
};
/**
* Returns weighted averaged precision
* @returns {float}
*/
MulticlassMetrics.prototype.weightedPrecision = function () {
var args = {
target: this,
method: 'weightedPrecision',
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns weighted averaged recall (equals to precision, recall and f-measure)
* @returns {float}
*/
MulticlassMetrics.prototype.weightedRecall = function () {
var args = {
target: this,
method: 'weightedRecall',
returnType: Number
};
return Utils.generate(args);
};
/**
* Returns weighted false positive rate
* @returns {float}
*/
MulticlassMetrics.prototype.weightedFalsePositiveRate = function () {
var args = {
target: this,
method: 'weightedFalsePositiveRate',
returnType: Number
};
return Utils.generate(args);
};
MulticlassMetrics.moduleLocation = '/mllib/evaluation#MulticlassMetrics';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return MulticlassMetrics;
};