/*
* Copyright 2015 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var RDD = require('../../rdd/RDD.js');
var gKernelP;
/**
* Evaluator for binary classification.
*
* @param scoreAndLabels an RDD of (score, label) pairs.
* @param numBins if greater than 0, then the curves (ROC curve, PR curve) computed internally
* will be down-sampled to this many "bins". If 0, no down-sampling will occur.
* This is useful because the curve contains a point for each distinct score
* in the input, and this could be as large as the input itself -- millions of
* points or more, when thousands may be entirely sufficient to summarize
* the curve. After down-sampling, the curves will instead be made of approximately
* `numBins` points instead. Points are made from bins of equal numbers of
* consecutive points. The size of each bin is
* `floor(scoreAndLabels.count() / numBins)`, which means the resulting number
* of bins may not exactly equal numBins. The last bin in each partition may
* be smaller as a result, meaning there may be an extra sample at
* partition boundaries.
*
* @classdesc
*/
/**
* @param {module:eclairjs/rdd.RDD} scoreAndLabels
* @param {number} numBins
* @class
* @memberof module:eclairjs/mllib/evaluation
*/
function BinaryClassificationMetrics() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* Computes the area under the receiver operating characteristic (ROC) curve.
* @returns {number}
*/
BinaryClassificationMetrics.prototype.areaUnderROC = function() {
var args = {
target: this,
method: 'areaUnderROC',
returnType: Number
};
return Utils.generate(args);
};
BinaryClassificationMetrics.prototype.precisionByThreshold = function() {
var args = {
target: this,
method: 'precisionByThreshold',
returnType: RDD
};
return Utils.generate(args);
};
BinaryClassificationMetrics.prototype.recallByThreshold = function() {
var args = {
target: this,
method: 'recallByThreshold',
returnType: RDD
};
return Utils.generate(args);
};
BinaryClassificationMetrics.prototype.fMeasureByThreshold = function(beta) {
var args = {
target: this,
method: 'fMeasureByThreshold',
args: Utils.wrapArguments(arguments),
returnType: RDD
};
return Utils.generate(args);
};
BinaryClassificationMetrics.prototype.pr = function() {
var args = {
target: this,
method: 'pr',
returnType: RDD
};
return Utils.generate(args);
};
BinaryClassificationMetrics.moduleLocation = '/mllib/evaluation/BinaryClassificationMetrics';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return BinaryClassificationMetrics;
};