/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var RDD = require('../../rdd/RDD.js');
var PowerIterationClusteringModel = require('./PowerIterationClusteringModel.js')();
var gKernelP;
/**
* @memberof module:eclairjs/mllib/clustering
* @classdesc
* Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100,
* initMode: "random"}.
* @class
*/
function PowerIterationClustering() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* Set the number of clusters.
* @param {number} k
* @returns {module:eclairjs/mllib/clustering.PowerIterationClustering}
*/
PowerIterationClustering.prototype.setK = function(k) {
var args = {
target: this,
method: 'setK',
args: Utils.wrapArguments(arguments),
returnType: PowerIterationClustering
};
return Utils.generate(args);
};
/**
* Set maximum number of iterations of the power iteration loop
* @param {number} maxIterations
* @returns {module:eclairjs/mllib/clustering.PowerIterationClustering}
*/
PowerIterationClustering.prototype.setMaxIterations = function(maxIterations) {
var args = {
target: this,
method: 'setMaxIterations',
args: Utils.wrapArguments(arguments),
returnType: PowerIterationClustering
};
return Utils.generate(args);
};
/**
* Set the initialization mode. This can be either "random" to use a random vector
* as vertex properties, or "degree" to use normalized sum similarities. Default: random.
* @param {string} mode
* @returns {}
*/
PowerIterationClustering.prototype.setInitializationMode = function(mode) {
throw "not implemented by ElairJS";
};
/**
* Run the PIC algorithm on Graph.
*
* @param {module:eclairjs/rdd.RDD | Graph} similaritiesOrGraph an RDD of (i, j, s,,ij,,) tuples representing the affinity matrix, which is
* the matrix A in the PIC paper. The similarity s,,ij,, must be nonnegative.
* This is a symmetric matrix and hence s,,ij,, = s,,ji,,. For any (i, j) with
* nonzero similarity, there should be either (i, j, s,,ij,,) or
* (j, i, s,,ji,,) in the input. Tuples with i = j are ignored, because we
* assume s,,ij,, = 0.0. Or a graph an affinity matrix represented as graph, which is the matrix A in the PIC paper.
* The similarity s,,ij,, represented as the edge between vertices (i, j) must
* be nonnegative. This is a symmetric matrix and hence s,,ij,, = s,,ji,,. For
* any (i, j) with nonzero similarity, there should be either (i, j, s,,ij,,)
* or (j, i, s,,ji,,) in the input. Tuples with i = j are ignored, because we
* assume s,,ij,, = 0.0.
*
* @returns {module:eclairjs/mllib/clustering.PowerIterationClusteringModel} a [[PowerIterationClusteringModel]] that contains the clustering result
*/
PowerIterationClustering.prototype.run = function(similaritiesOrGraph) {
var args = {
target: this,
method: 'run',
args: Utils.wrapArguments(arguments),
returnType: PowerIterationClusteringModel
};
return Utils.generate(args);
};
/**
* A Java-friendly version of {@link run}.
* @param {JavaRDD} similarities
* @returns {module:eclairjs/mllib/clustering.PowerIterationClusteringModel}
*/
PowerIterationClustering.prototype.run2 = function(similarities) {
throw "not implemented by ElairJS";
};
PowerIterationClustering.moduleLocation = '/mllib/clustering#PowerIterationClustering';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return PowerIterationClustering;
};