/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var gKernelP;
/**
* Model for Naive Bayes Classifiers.
*
* @memberof module:eclairjs/mllib/classification
* @classdesc
*
* @constructor
* @implements {ClassificationModel}
*/
function NaiveBayesModel() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* Predict values for the given data set using the model trained.
*
* @param {module:eclairjs/rdd.RDD | Vector} testData RDD representing data points to be predicted or Vector array representing a single data point
* @returns {module:eclairjs/rdd.RDD | float} an RDD[Double] where each entry contains the corresponding prediction or float predicted category from the trained model
*/
NaiveBayesModel.prototype.predict = function(testData) {
throw "not implemented by ElairJS";
};
/**
* Predict values for the given data set using the model trained.
*
* @param {module:eclairjs/rdd.RDD | Vector} testData RDD representing data points to be predicted
* in the same order as class labels
* @returns {module:eclairjs/rdd.RDD | Vector} an RDD[Vector] where each entry contains the predicted posterior class probabilities,
*/
NaiveBayesModel.prototype.predictProbabilities = function(testData) {
throw "not implemented by ElairJS";
};
/**
* @param {module:eclairjs.SparkContext} sc
* @param {string} path
* @returns {Promise.<Void>} A Promise that resolves to nothing.
*/
NaiveBayesModel.prototype.save = function(sc,path) {
throw "not implemented by ElairJS";
};
NaiveBayesModel.moduleLocation = '/mllib/classification#NaiveBayesModel';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return NaiveBayesModel;
};