/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var NaiveBayesModel = require('./NaiveBayesModel')();
var gKernelP;
/**
* Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
*
* This is the Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all kinds of
* discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
* document classification. By making every vector a 0-1 vector, it can also be used as
* Bernoulli NB ([[http://tinyurl.com/p7c96j6]]). The input feature values must be nonnegative.
* @memberof module:eclairjs/mllib/classification
* @classdesc
* @param {number} lambda
* @class
*/
function NaiveBayes() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* @param {number} lambda
* @returns {module:eclairjs/mllib/classification.NaiveBayes}
*/
NaiveBayes.prototype.setLambda = function(lambda) {
var args = {
target: this,
method: 'setNumClasses',
args: Utils.wrapArguments(arguments),
returnType: NaiveBayes
};
return Utils.generate(args);
};
/**
* @returns {Promise.<number>}
*/
NaiveBayes.prototype.getLambda = function() {
var args = {
target: this,
method: 'getLambda',
returnType: Number
};
return Utils.generate(args);
};
/**
* Set the model type using a string (case-sensitive).
* Supported options: "multinomial" (default) and "bernoulli".
* @param {string} modelType
* @returns {module:eclairjs/mllib/classification.NaiveBayes}
*/
NaiveBayes.prototype.setModelType = function(modelType) {
var args = {
target: this,
method: 'setModelType',
args: Utils.wrapArguments(arguments),
returnType: NaiveBayes
};
return Utils.generate(args);
};
/**
* @returns {Promise.<string>}
*/
NaiveBayes.prototype.getModelType = function() {
var args = {
target: this,
method: 'getModelType',
returnType: String
};
return Utils.generate(args);
};
/**
* Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.
*
* @param {module:eclairjs/rdd.RDD} data RDD of {@link LabeledPoint}.
* @returns {module:eclairjs/mllib/classification.NaiveBayesModel}
*/
NaiveBayes.prototype.run = function(data) {
var args = {
target: this,
method: 'run',
returnType: NaiveBayesModel
};
return Utils.generate(args);
};
//
// static methods
//
/**
* Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
*
* The model type can be set to either Multinomial NB ([[http://tinyurl.com/lsdw6p]])
* or Bernoulli NB ([[http://tinyurl.com/p7c96j6]]). The Multinomial NB can handle
* discrete count data and can be called by setting the model type to "multinomial".
* For example, it can be used with word counts or TF_IDF vectors of documents.
* The Bernoulli model fits presence or absence (0-1) counts. By making every vector a
* 0-1 vector and setting the model type to "bernoulli", the fits and predicts as
* Bernoulli NB.
*
* @param {module:eclairjs/rdd.RDD} input RDD of `(label, array of features)` pairs. Every vector should be a frequency
* vector or a count vector.
* @param {float} [lambda] The smoothing parameter
*
* @param {string} [modelType] The type of NB model to fit from the enumeration NaiveBayesModels, can be
* multinomial or bernoulli
* @returns {module:eclairjs/mllib/classification.NaiveBayesModel}
*/
NaiveBayes.train = function(input, lambda, modelType) {
var args = {
target: NaiveBayes,
method: 'train',
kernelP: gKernelP,
static: true,
args: Utils.wrapArguments(arguments),
returnType: NaiveBayesModel
};
return Utils.generate(args);
};
NaiveBayes.moduleLocation = '/mllib/classification#NaiveBayes';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return NaiveBayes;
};