/*
* Copyright 2015 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var LogisticRegressionModel = require('./LogisticRegressionModel.js')();
var gKernelP;
/**
* Construct a LogisticRegression object with default parameters: {stepSize: 1.0,
* numIterations: 100, regParm: 0.01, miniBatchFraction: 1.0}.
* @memberof module:eclairjs/mllib/classification
* @classdesc
* @class
*/
function LogisticRegressionWithSGD() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed
* number of iterations of gradient descent using the specified step size. Each iteration uses
* `miniBatchFraction` fraction of the data to calculate the gradient. The weights used in
* gradient descent are initialized using the initial weights provided.
* NOTE: Labels used in Logistic Regression should be {0, 1}
*
* @param {module:eclairjs/rdd.RDD} input RDD of (label, array of features) pairs.
* @param {number} numIterations Number of iterations of gradient descent to run.
* @param {number} [stepSize] step size to be used for each iteration of gradient descent, defaults to 1.0.
* @param {number} [miniBatchFraction] fraction of data to be used per iteration.
* @param {module:eclairjs/mllib/linalg.Vector} [initialWeights] initial set of weights to be used. Array should be equal in size to
* the number of features in the data.
* @returns {module:eclairjs/mllib/classification.LogisticRegressionModel}
*/
LogisticRegressionWithSGD.train = function(input, numIterations, stepSize, miniBatchFraction, initialWeights) {
var args = {
target: LogisticRegressionWithSGD,
method: 'train',
kernelP: gKernelP,
static: true,
args: Utils.wrapArguments(arguments),
returnType: LogisticRegressionModel
};
return Utils.generate(args);
};
LogisticRegressionWithSGD.moduleLocation = '/mllib/classification#LogisticRegressionWithSGD';
module.exports = function(kP) {
if (kP) gKernelP = kP;
return LogisticRegressionWithSGD;
};