/*
* Copyright 2015 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
var Utils = require('../../utils.js');
var gKernelP;
/**
* Classification model trained using Multinomial/Binary Logistic Regression.
*
* @memberof module:eclairjs/mllib/classification
* @classdesc
*
* @param {module:eclairjs/mllib/linalg.Vector} weights Weights computed for every feature.
* @param {float} intercept Intercept computed for this model. (Only used in Binary Logistic Regression.
* In Multinomial Logistic Regression, the intercepts will not be a single value,
* so the intercepts will be part of the weights.)
* @param {int} [numFeatures] the dimension of the features.
* @param {int} [numClasses] the number of possible outcomes for k classes classification problem in
* Multinomial Logistic Regression. By default, it is binary logistic regression
* so numClasses will be set to 2.
* @class
* @extends GeneralizedLinearModel
*/
function LogisticRegressionModel() {
Utils.handleConstructor(this, arguments, gKernelP);
}
/**
* Sets the threshold that separates positive predictions from negative predictions
* in Binary Logistic Regression. An example with prediction score greater than or equal to
* this threshold is identified as an positive, and negative otherwise. The default value is 0.5.
* It is only used for binary classification.
* @param {number} threshold
* @returns {}
*/
LogisticRegressionModel.prototype.setThreshold = function(threshold) {
throw "not implemented by ElairJS";
};
/**
* Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions.
* It is only used for binary classification.
* @returns {number}
*/
LogisticRegressionModel.prototype.getThreshold = function() {
throw "not implemented by ElairJS";
};
/**
* Clears the threshold so that `predict` will output raw prediction scores.
* It is only used for binary classification.
* @returns {module:eclairjs/mllib/classification.LogisticRegressionModel}
*/
LogisticRegressionModel.prototype.clearThreshold = function() {
var args = {
target: this,
method: 'clearThreshold',
returnType: LogisticRegressionModel
};
return Utils.generate(args);
};
/**
* @param {module:eclairjs.SparkContext} sc
* @param {string} path
* @returns {Promise.<Void>} A Promise that resolves to nothing.
*/
LogisticRegressionModel.prototype.save = function(sc, path) {
var args = {
target: this,
method: 'save',
args: Utils.wrapArguments(arguments),
returnType: null
};
return Utils.generate(args);
};
/**
* @returns {Promise.<Vector>}
*/
LogisticRegressionModel.prototype.weights = function() {
var args = {
target: this,
method: 'weights',
stringify: true,
returnType: [Number] // A vector essentially
};
return Utils.generate(args);
};
/**
* @param {module:eclairjs.SparkContext} sc
* @param {string} path
* @returns {module:eclairjs/mllib/classification.LogisticRegressionModel}
*/
LogisticRegressionModel.load = function(sc, path) {
var args = {
target: LogisticRegressionModel,
method: 'load',
kernelP: gKernelP,
static: true,
args: Utils.wrapArguments(arguments),
returnType: LogisticRegressionModel
};
return Utils.generate(args);
};
LogisticRegressionModel.moduleLocation = '/mllib/classification#LogisticRegressionModel';
module.exports = function(kP) {
if (!gKernelP) {
if (kP) gKernelP = kP;
}
return LogisticRegressionModel;
};